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Abstract– Quantum computing is a new development in the field 
of information processing as it performs complex calculations 
and solve mathematical problems and equations. Quantum bit 
(qubit), a two-state quantum mechanical system, is the basic unit 
in quantum computing. The nature of superposition principle 
allows the qubit to be in superposition of states at same time. 
Superposition of qubits causes quantum computing to inherent 
parallelism and thus quantum computers can perform 
calculations faster and more accurate compared to classical 
computers. Since qubits are understood as quantum mechanical 
systems, this paper reviews the concepts of quantum computing, 
then qubits and some operators are explained in two- and N-
dimensions in different spaces, and finally, some quantum gates 
are expanded. 
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1. Introduction 
 
Quantum computing is a breakthrough in the field of 
information processing because quantum algorithms cloud 
solves some mathematical tasks presently considered as 
intractable, such as the factorization of large numbers, 
exponentially faster than classical algorithms operated on 
sequential Von Neumann computer [1]. Richard Feynman [2] 
proposed the idea that certain calculations cloud be computed 
much efficiently with quantum mechanical rather than with 
classical computers; however, creating quantum computer is 
not an easy task. He proposed the concept of simulating 
physics with a quantum computer and postulated that by 
manipulating the properties of quantum mechanics and 
quantum particles one could develop and entirely new kind of 
computer [1]. In quantum computing at one particular time the 
state can be 0 or 1 or both at the same time keep on switching 
to either 0 or 1. In classical computer, calculation can be 
performed one at a time but in quantum computer it can 
perform multiple calculations at once and makes it much 
faster. Because quantum computers can contain multiple states 
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at the same time, they have the potential to be much more times 
powerful than the classical supercomputers. In quantum 
computers, inherent parallelism is due to superposition of 
qubits and this parallelism causes that quantum computers 
perform millions of calculations at once. of superposition of 
qubits.  

 

2. Quantum Computers 
 
Using concept of the superposition, entanglement and 
interference in quantum computing, quantum computers can 
solve some complex problems faster and more accurate than 
classical computers. There are set of criterion put forward by 
Vincenzo [3], which tries to summarize the basic structure and 
needs of an ideal quantum computer, as follows: (i) a quantum 
physical system must have orthogonal quantum states, (ii) it 
should be possible to prepare the system in one of the 
orthogonal states, (iii) There should be a macroscopic 
procedure for measuring distinguishably, (ⅳ) one can create a 
universal set of quantum logic elements to act upon it, (ⅴ) 
coherence time (time to remain in superposition upon action of 
external disturbances) should be larger than the decoherence 
time, and (ⅵ) scalability: should be able to create a huge 
number of qubit and is enabled to control each qubit separately 
such that all are safe from decoherence.  

a quantum computer provides a speed up over some classical 
algorithms, as well as, for some complex calculations e.g., 
Shor’s algorithm [4]. Other task can be realized only using a 
quantum computer, that is the case for complicated 
simulations, such as many body systems or biological 
processes [5]. Quantum computers have much advantage and 
more applications in different fields than classical computers. 
A few applications are as following: 

Machine learning: machine learning is a treading area now a 
day because we can now significant deployment at the 
consumer level of many different platforms. we are now seeing 
aspect of every day in voice, image and handwriting 
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recognition, to name just a few examples. But it is also difficult 
and computationally expensive task in term of data and 
processing, where here the quantum bits help a lot.  

Weather forecasting: the weather forecasting needs fast 
computation of huge data and if classical computer is used to 
perform such analysis might take longer than it takes the actual 
weather to evolve. 

Cryptography: quantum cryptography is a latest and advanced 
branch of cryptography, where its basis lays in the two beliefs 
of quantum techniques: Heisenberg’s uncertainly principle and 
principle of photon polarization [6]. As we know the quantum 
computer are very powerful machine for computation of any 
equation. It will be so easy to decrypt any data encrypted by 
the classical computers. Encryption and decryption will be too 
powerful and easy for quantum computer. 

Molecular modeling: today the quantum chemistry is too 
complex that only the simplest molecules can be analyzed by 
today’s classic computers. Chemical reactions are quantum in 
nature as they form highly entangled quantum superposition 
states. 

Drug design: drug design is a promising are of application that 
will find a number of uses for these new machines. As a 
prominent example, quantum simulation will enable faster and 
more accurate characterizations of molecular systems than 
existing quantum chemistry methods. 

Data storage: since the quantum computer uses qubits and 
increases exponentially (2x), therefore, each time a qubit is 
added, the amount of numbers that can be stored on the device 
becomes double. For example, two qubits can store four 
numbers and five qubits can store for thirty-two numbers. 

 

3. Qubits 

A bit is the basic unit of information in classical computing. 
Analogously the qubit is the basic unit in quantum 
computing(qubit). A qubit is a 2 - state quantum mechanical 
system, which in fact is an abstract entity that can be physically 
realized in different ways. The main difference between a bit 
and qubit is that whereas in a classical computer a bit of 
information will encode either a 0 or 1, the nature of the 
principle of superposition in quantum mechanics allows the 
qubit to be in superposition of both states at same time. This 
means that a quantum computer could perform many 
calculations at the same time: A system with N qubits could 
execute 2N calculation in parallel. 

The certain period of time that the qubits are able to store 
quantum information is called coherence time. This time is 
necessary for correlation of qubits and parallelism processing. 
Due to out of control or non-desired interactions of systems 
with environment, the quantum systems have tendency to lose 
quantum properties through a process which called 
decoherence [7] Another important feature is that multiple 
qubits can exhibit quantum entanglement, allowing a set of 
qubits to express higher correlation than in classical system. In 
the entangled state, a system cannot be described by meanings 

of a local state. A qubit is a two-dimensional system; likewise, 
a qubit is a d-dimensional system. Unfortunately, some 
difficulties are generated when we try to operate 
mathematically [8]. Qubits could simplify some simulations of 
quantum mechanical systems and improve quantum 
cryptography [9]. A quantum bit can exist in superposition, 
which means that it can exist in multiple states at once. 
Compared to a regular bit, which can exist in one of two states, 
1 or 0, the quantum bit can exist as a 1,0 or superposition of 
them at the same time. This allows for fast computing and the 
ability to do multitudes of calculations at once, theoretically. 
The basic element in the classical computing model is the bit 
variable, which can only accept two value 1 and 0 which, in 
the mathematical description in the context of Boolean algebra 
are called truth and false. Theoretical bits are implemented as 
transistor devices that can be localized in two stable states, by 
which Boolean operation And, Or and Not can be expressed. 
Physical and technological limitations have led to the creation 
of quantum information, the basic concept of which is a 
quantum bit a qubit, which is understood as a quantum 
mechanical system that can be in two states [1]. In a two-
dimensional Hilbert space, the qubit state is described by the 
vector; which in Dirac's notation is called a ket vector [10] 
given in equation 1. 

                  |ѱ>=  �𝑎𝑎𝑏𝑏� =a|0>+b|1>                          (1) 

Where |0>=�1
0� and |1>=�0

1� are the orthogonal base vectors, 

and in the general case the complex number a and b, called 
probability amplitudes, satisfy the condition as given in 
equation (2).  

                          a2 +b2 =1                                        (2) 

Equation 1 shows that unlike the classical bit, which may be in 
the state zero or in the state one, the qubit exist in a 
superposition state -the understanding of which is possible 
only from the point of quantum mechanics [9,10]. Classical 
bits can be operated on independently of each other changing 
0 to 1 or 1 to 0 but a bit in one location has no effect on bits in 
other locations. Qubits can be set up using a quantum 
mechanical property called entanglement so that they are 
dependent on each other [1]. Qubit can also be defined as a 
two-state quantum-mechanical system. In the language of 
mathematics, it can be called a two-dimensional vector in 
Hilbert space [11] As given in equation 3. 

|ѱ>=�𝑎𝑎𝑏𝑏� = a|0>+b|1> , |0>=�10�|1>=�10�            (3) 

a2 (in Eq.(2)) gives the probability of getting |0> state and 
similarly.  b2 (in Eq.(2)) gives the probability of getting |1> 
upon measuring the qubit. Length of the state vector should be 
unit as given Eq2. Using the above reasons, qubit |ѱ> can be 
writing as a reduce form.  

           |ѱ>= cos 𝜃𝜃
2
|0>+𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝑖𝑖

2
b|1>                        (4)  

Where, θ and φ are polar and azimuthal angels, respectively. 
Such representation of a single qubit can be visualized 
through the Bloch sphere as shown in Fig. 1 [12]. 
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Fig. 1. A Bloch sphere. 

Fig. 1 is a Bloch sphere representing the state of a qubit.  

In a Bloch sphere, qubit is an arrow residing on the surface 
of the sphere corresponding to the pure states of the system, 
whereas the interior points correspond to the mixed states tip 
on a unit radius sphere in R*3 space [13]. Any two-level 
quantum mechanical system can be used as a qubit. The 
following is an incomplete list of physical implementations of 
qubits and the choices of basis are by convention only.  

Table 1. Two-level quantum mechanical system. 
Physical 
support 

Name Informati
on 
support 

|0> |1> 

Photon Polarization 
encoding 

Polarizati
on of 
light 

Horizontal Vertical 

Photon Number of 
photon 

Foke 
state 

Vacuum Single 
photon 
state 

Photon Time 
Bin encoding 

Time of 
arrival 

Early Late 

Electrons Electronic 
spin 

Spin Up Down 

Electrons Electron 
number 

Charge No 
electron 

One 
electron 

Nucleus Nuclear spin 
addressed 
through 
NMR 

Spin Up Down 

Optical 
lattices 

Atomic spin Spin Up Down 

 
4. Masny Qubits’ System 

Usually, we have a system with more than one qubit, which 
means that we have to form tensor products. For a system with 
two qubits the underlying ordered basis is [9]: 

(�10� ⊗ �10� , �10� ⊗ �01� , �01� ⊗ �10� , �01� ⊗ �01�)            (5) 

This can be written as follows: 

(|0 >⊗ |0 >, |0 >⊗ |1 >, |1 >⊗ |0 >, |1 >⊗ |1 >)    (6) 

Finally, we make the convention that we let |ab> denote 
|a>|b>, giving the representation (|00>,|01>,|10>,|11>) that is 
short and easy to read. According to procedure, 22=4, basis 
vectors for the two-qubits system appear to be as follows: 

|0 > |0 >= |00 >= �1
0�⊗ �1

0� = �
1
0
0
0

�              (7) 

|0 > |1 >= |01 >= �1
0�⊗ �0

1� = �
0
1
0
0

�               (8) 

|1 > |0 >= |10 >= �0
1�⊗ �1

0� = �
0
0
1
0

�               (9) 

|1 > |1 >= |11 >= �0
1�⊗ �0

1� = �
0
0
0
1

�            (10) 

They form an orthogonal basis, the state vector |ѱ> in this 
basis recorded as: 

|ѱ >= 𝑎𝑎00 |00 > +𝑎𝑎01|01 > +𝑎𝑎10 |10 > +𝑎𝑎11|11 >   (11) 

Where, probability amplitudes satisfy the condition: 

a00 
2 + a012 + a102 + a112  = 1             (12) 

In general case, the state vector for the n qubits system is a 
schedule based on the2n basis state of the system. 

               |𝑖𝑖1 ··· 𝑖𝑖𝑛𝑛 >, 𝑖𝑖1 ·· 𝑖𝑖𝑛𝑛 = {0, 1}                  (13)                                             

       |ѱ >= ∑ 𝑎𝑎𝑖𝑖1···𝑖𝑖𝑛𝑛|𝑖𝑖1 ··· 𝑎𝑎𝑛𝑛 >𝑖𝑖1····𝑖𝑖𝑛𝑛                  (14)                               

In other words, the base state |𝑖𝑖1 ··· 𝑖𝑖𝑛𝑛 > in equation 4 is a n 
dimensional binary number |𝑥𝑥 >. In these notations, the state 
of vector is recorded in the form of: 

                   |ѱ >= ∑ 𝑎𝑎𝑥𝑥 |𝑥𝑥 >2𝑥𝑥−1
𝑥𝑥=0              (15) 

In a system of several qubits, a super positional state is 
formed for the whole system. The basis for such a system is 
formed as a tensor product of the state of each qubit.  In general 
case, the tensor product of the matrices A, with dimension 
M×N and B with dimension R×S, their tensor product is called 
the matrix with dimensionality MR×NS that is obtained 
according to equation (16) [9,10]. 

𝐴𝐴 × 𝐵𝐵 = �
𝑎𝑎11 𝐵𝐵 𝑎𝑎12 𝐵𝐵 .
𝑎𝑎21 𝐵𝐵 𝑎𝑎22 𝐵𝐵 .

. . .

. . .
. . 𝑎𝑎1𝑛𝑛 𝐵𝐵
. . 𝑎𝑎2𝑛𝑛 𝐵𝐵. . .

𝑎𝑎𝑚𝑚1 𝐵𝐵 𝑎𝑎𝑚𝑚2 𝐵𝐵 .
. . .
. . .

. . .

. . 𝑎𝑎𝑚𝑚𝑛𝑛 𝐵𝐵
� (16) 

     

5. Quantum Gates 

In classical computers, the computational process can be 
described by the formalism of Boolean algebra:   𝑓𝑓: {0,1}𝑛𝑛 →
{0,1}𝑚𝑚; which transforms the state of the n bits in the state of 
the m bits. Such functions are constructed from certain blocks, 
using schematic approaches, and they are called logical 
elements. In a quantum computation, model the state of a qubit  
 |ѱ > under the action of a certain physical variable is 
changing. It is known that quantum mechanics physical 
quantities are assigned to the matching Hermitian operator, to 
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which in turn, matrix is matched in Hilbert space. Within this 
formalism, for example, the qubit rotation can be described by 
changing the basis, which provides the method for finding the 
matrices of corresponding rotation as a product of the ket- 
vector on the bra-vector: |𝑖𝑖 > ˂𝑗𝑗|. For example, if the operator 
carries out the following transformation of the basis: |0 >→
|0 >; |1 >→ |1 > , then the Matrix of such an operator will be 
unitary [9,10]: 

𝐼𝐼 = |0 > ˂0| + |1 > ˂1| = �1
0�

(1 0) + �0
1�

(0 1) =

�1 0
0 0� + �0 0

0 1� = �1 0
0 1�                                             (17) 

The operator X which carriers out the following 
transformation of the basis |0 >→ |1 >; |1 >→ |0 >  have the 
matrix: 

𝑋𝑋 = |0 > ˂1| + |1 > ˂0| = �1
0�

(0 1) + �0
1�

(1 0) =

�0 1
0 0� + �0 0

1 0� = �0 1
1 0�                                             (18)   

Where, X is Pauli matrix. 

This unitary operator is an analogue of the classical NOT, 
because it rearranges the coefficients a and b.  

𝑋𝑋| >= 𝑋𝑋(𝑎𝑎| > +𝑏𝑏| >) = �0 1
1 0� �

𝑎𝑎
𝑏𝑏� = �𝑏𝑏𝑎𝑎�       (19) 

Other important standard are single-qubit elements, the Y 
and Z elements, whose matrices are Pauli matrices [9,10]: 

𝑌𝑌 = 𝑖𝑖|0 > ˂1| − 𝑖𝑖|1 > ˂0| = −𝑖𝑖 �1
0�

(0 1) +

𝑖𝑖 �0
1�

(1 0) = �0 −𝑖𝑖
0 0 � + �0 0

𝑖𝑖 0� = �0 −𝑖𝑖
𝑖𝑖 0 �               (20) 

𝑍𝑍 = |0 > ˂0| − |1 > ˂1| = �1
0�

(1 0) − �0
1�

(0 1) =

�1 0
0 0� − �0 0

0 1� = �1 0
0 −1�                                          (21) 

Of great importance, single qubit elements is transformation 
of Hadamard, H, which carries out such a transformation of the 
basis.  

|0 >→ 1
√2

(|0 > +|1 >) ; |1 >→ 1
√2

(|0 > −|1 >)   (22) 

Where, it's Matrix looks like: 

𝑈𝑈𝐻𝐻 = 1
√2

(|0 >< 0| + |0 >< 1|) + 1
√2

(|1 >< 0| − |1 ><

1|) = 1
√2
��1

0�
(1 0) + �1

0�
(0 1) + �0

1�
(1 0) −

�0
1�

(1 0)� = 1
√2
��1 0

0 0�� + �0 1
0 0� + �0 0

1 0� −

�0 0
1 0� = 1

√2
 �1 1

1 −1�                                                      (23) 

This operator is often used in quantum algorithms. Some of 
the o quantum gates are as following:  

NOT gate in classical: 𝑎𝑎 → 𝑎𝑎 ≡ 𝑎𝑎 + 1; 0 → 0 ≡ 0 + 1 =
1: 1 → 1 ≡ 1 + 1 = 0    

Quantum NOT: 𝑋𝑋|𝑎𝑎 >= |𝑎𝑎 >≡ |𝑎𝑎 ⊕ 1 >  ; 𝑋𝑋|0 >= |0 >
≡ |0 ⊕ 1 >= |1 >  ; 

 X|1 >= |1 >≡ |1 ⊕ 1 >= |0 >, Where ⊕ is the 
summation operator that sums two kets. 

Controlled-U gate: |𝑎𝑎 >→ |𝑎𝑎 >, |𝑏𝑏 >→ 𝑢𝑢𝑎𝑎 |𝑏𝑏 > . U can be 
an arbitrary single-qubit gate, where U works only if a=1. 

CNOT gate i: |𝑎𝑎 >→ |𝑎𝑎 >, |𝑏𝑏 >→ 𝑋𝑋𝑎𝑎 |𝑏𝑏 >= |𝑏𝑏 ⊕ 𝑎𝑎 > , 
when |0 ⊕ 0 ⩾= |0 >, |1 ⊕ 1 >= |0 ⩾ 

𝑐𝑐12|00 >= |0 > |0 ⊕ 0 >= |00 >  , 𝑐𝑐12|01 >= |0 >
|0 ⊕ 1 >= |01 >   

𝑐𝑐12|10 >= |1 > |1 ⊕ 0 >= |11 >  , 𝑐𝑐12|11 >= |1 >
|1 ⊕ 1 >= |10 >   

Using equations 7 to 10 as following 

|00 >= �
1
0
0
0

� , |01 >= �
0
1
0
0

� , |10 >= �
0
0
1
0

� , |11 >=

�
0
0
0
1

� then matrix exhibition of CNOT gate is as following: 

𝑐𝑐12 = �
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

� 

CNOT gate ᴨ: |a >→ |a� >= |a ⊕ b >, |b >→  |b >= |b >      
when  |0 ⊕ 0 >= |0 >, |1 ⊕ 1 >= |0 >    

𝑐𝑐21|00 >= |00 > ,  𝑐𝑐21|01 >= |11 >   , 𝑐𝑐21|10 >= |10 >  
,  𝑐𝑐21|11 >= |01 >   then matrix exhibition of CNOT gate as 
following: 

𝑐𝑐21 = �
1 0
0 0

0 0
0 0

0 0
0 1

1 0
0 1

� 

SWAP gate: |𝑎𝑎 >→ |𝑏𝑏 > ,    |𝑏𝑏 >→  |𝑎𝑎 >      ; |𝑎𝑎 > |𝑏𝑏 >
𝑐𝑐12 
��  |𝑎𝑎 > |𝑏𝑏 ⊕ 𝑎𝑎 >

𝑐𝑐21 
�� |𝑎𝑎 ⊕ 𝑏𝑏 ⊕ 𝑎𝑎 > |𝑏𝑏 ⊕ 𝑎𝑎 >= |𝑏𝑏 > |𝑏𝑏 ⊕

𝑎𝑎 >
𝑐𝑐12�� |𝑏𝑏 > |𝑏𝑏 ⊕ 𝑎𝑎 ⊕ 𝑏𝑏 >= |𝑏𝑏 > |𝑎𝑎 > 

To implement SWAP gate, we need to take the following 
steps: (i) encode the information on |a > in to 2nd qubit, (ii) 
erase the information on |𝑏𝑏 > from 1nd qubit, (iii) encode the 
information on |𝑏𝑏 > in to 1nd qubit, and (iv) erase the 
information on |𝑏𝑏 > from 2nd qubit. Therefore, we can obtain 
the following example from above mentioned 

𝑐𝑐12|00 >= |00 > 

𝑐𝑐12|01 >= |10 > 

𝑐𝑐12|10 >= |01 > 

𝑐𝑐12|11 >= |11 > 

Then, matrix exhibition of SWAP is as follows: 
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𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 = �
1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

� 

Controlled-Z gate:  |𝑎𝑎 >→ |𝑎𝑎 > , |𝑏𝑏 >→ (−1)𝑎𝑎×𝑏𝑏|𝑏𝑏 > 
;|𝑎𝑎 > |𝑏𝑏 >

𝑐𝑐𝑐𝑐
→ (−1)𝑎𝑎×𝑏𝑏|𝑎𝑎 > |𝑏𝑏 >. In this gate, |a> does not 

change but sign of |b> changes if a×b not zero. 

|00 > → |00 > 

|01 > → |01 > 

|10 > → |10 > 

|11 > → −|11 > 

Then, matrix exhibition of CZ is as follows: 

𝑐𝑐𝑐𝑐 = �
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

� 

 

6. Conclusion 

Quantum computing has helped to the information 
processing by introduce quantum computers which can solve 
some specific types of problems many time faster and more 
accurate than classical computers by using the concepts of 
quantum mechanics. They can perform complicated 
simulations such as; many body systems or biological 
processes. But classical computer cannot replace, soon, with 
quantum computers because classical computers are better at 
some tasks, such as email, spreadsheet and desktop publishing, 
than quantum computers. 
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